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Report on “Workshop on quantum stochastic differential equations for the 
quantum simulation of physical systems” 

George Siopsis 

Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 

 

Summary 

This is a report on the “Workshop on quantum stochastic differential equations for the quantum 
simulation of physical systems” held at the Adelphi Laboratory Center, Adelphi, MD, on Monday, August 
22, 2016. It attracted mathematicians, computer scientists, logicians, and physicists (both theorists and 
experimentalists) who discussed their research and participated in stimulating discussions on how to 
apply mathematical tools to the quantum simulation of physical systems of interest to the Army. There 
were participants from US Government agencies, industry, and academia. The Workshop was financially 
supported by ARO via a grant to the University of Tennessee. The web site for the Workshop is 
http://aesop.phys.utk.edu/QI/Workshop.html. 

Participation 

Participation was by invitation only. The workshop attracted a diverse set of participants which included 
mathematicians, computer scientists, logicians, and physicists (both theorists and experimentalists). 
They came from various US Government agencies (ARL, AFRL, NIST, NSA), industry (IBM), US and 
Canadian academic institutions (University of Tennessee, University of Waterloo, University of 
Maryland, Dartmouth College, Northwestern University, MIT, CUNY, Johns Hopkins University). 

List of talks 

Radhakrishnan Balu (ARL) 
 

Anatomy of a quantum stochastic differential equation 

George Siopsis (University of 
Tennessee) 
 

Quantum simulations with continuous variables 

Raymond Laflamme (Director, 
Institute for Quantum Computing, 
University of Waterloo) 
 

Algorithmic cooling 

Samuel Lomonaco (University of 
Maryland, Baltimore County) 
 

Topological Quantum Computation 

David Gosset (Quantum Computing 
Theory Group, IBM) 
 

Complexity of quantum impurity models 

Miles Blencowe (Dartmouth College) 
 

Self-oscillating superconducting circuits, Wigner flows, and the 
generation of macroscopic quantum states of light 
 

http://aesop.phys.utk.edu/QI/Workshop.html


Jens Koch (Northwestern University) 
 

Using machine learning to control quantum circuits and 
produce exotic states of light 
 

Stephen Jordan (Applied and 
Computational Mathematics, NIST)  
 

Quantum Algorithms for Topological Invariants 

Dirk Englund (MIT) 
 

Quantum Information Processing Using Programmable Silicon 
Photonic Integrated Circuits 
 

John Terilla (Queens College, CUNY) Homotopy probability theory and fluid flow 
 

Mohammad Hafezi (University of 
Maryland, College Park) 
 

Topological physics in photonics systems 

  
Army relevance   

The various talks at the workshop and the discussions among participants centered around topological 
quantum field theories (TQFTs), topological quantum information, and simulation of materials with 
topological properties, as long-term goals of research of interest to the Army. Topological materials are 
multi-functional materials with very interesting thermal, electronic, and mechanical properties that 
would be very relevant to DoD applications in general, and Army purposes in particular. Except in special 
cases, such as graphene, these materials form a whole new class whose potential is yet to be explored. 
The workshop provided important insights into theoretical and computational efforts to study 
topological materials that would be complimentary to the efforts at ARL. One the other hand, 
topological quantum field theories have a dual application to topological quantum computation, which 
is relevant in the context of the quantum sciences program pursued at ARL. It should also be noted that 
these quantum systems, by their nature, require the use of mathematical tools of (quantum) probability 
theory and statistics, along with functional analysis, also of relevance to the mathematics program at 
ARL. 

Discussion 

[Workshop participants’ names are in bold characters.] 

Quantum simulation was first proposed by Richard Feynman who realized that classical computers could 
not simulate large physical systems at a microscopic level, because of the enormous amount of data 
needed to describe the state of such systems. Feynman argued that a quantum system could, instead, 
efficiently simulate physical systems that would be intractable by classical means (“Let the computer 
itself be built of quantum mechanical elements which obey quantum mechanical laws.” [1]). The 
development of quantum simulators is currently a very active and rapidly growing field of research. 
Unlike universal quantum computers which can run any conceivable quantum algorithm, quantum 
simulators are specialized devices that only run quantum algorithms appropriate for a certain physical 
system (or class of systems). Thus they use fewer resources, and one may be able to build them using 
existing technology. 

Quantum simulators have been based on a variety of architectures, including photons (employed in 
continuous variable quantum computation, simulation of quantum (stochastic) walks, etc.), neutral 



atoms, trapped ions, cavity arrays, electronic spins (quantum dots), nuclear spins (NMR), and 
superconducting circuits. There exist four types of quantum simulation: 

1. Digital, which is based on quantum circuits consisting of discrete quantum gates). 
2. Analogue, in which one (controllable) quantum system mimics another, and includes adiabatic 

models. 
3. Hybrid, a combination of digital and analogue quantum simulation. 
4. Quantum information inspired algorithms for classical simulation. 

There is an endless list of applications. To mention a few: 

1. Solid state physics (Hubbard and spin models, quantum phase transitions, spin glasses, 
disordered and frustrated systems, high-temperature superconductors, topological order, etc.). 

2. Atomic physics (cavity QED, cooling). 
3. Open quantum systems. 
4. Chemistry (molecular energies, thermal rates, chemical reactions). 
5. Interferometry (Mach-Zehnder, Fano, Fabry-Perot, boson sampling). 
6. High energy physics (quantum field theory, Dirac equation, etc.) 
7. Relativity and cosmology (Unruh effect, Hawking radiation, Universe expansion). 

While quantum mechanics is a deterministic theory defining a unitary time evolution, to extract any 
physical information one needs to perform a measurement, which involves a stochastic process 
(collapse of the wavefunction). Thus a full description of a quantum system is provided by a 
quantum stochastic differential equation (QSDE) [2], introduced at the Workshop by Balu. Physical 
observables yield classical random variables. They are defined as self-adjoint operators on a Hilbert 
space, themselves forming a Banach space under the operator norm topology. Thus, probability 
theory and statistics, along with standard tools of functional analysis, can be employed to 
investigate quantum systems whose dynamics can be naturally captured by quantum analogues of 
stochastic processes [3]. The mathematical framework for the study of quantum systems is known 
as quantum (non-commutative) probability theory [4,5]. Important computational tool in the study 
of open quantum systems are QNET [6], QuTip [7], and QSD [8]. One can use them to derive master 
equations for the quantum system of interest, and then solve the QSDE numerically [9]. Of 
particular interest is the development of quantum networks using these tools. 

Turning to topological properties of materials, it should be noted that the study of topological 
invariants has been a fertile ground for interactions between mathematicians and physicists. An 
important example is the Jones polynomial which is a characteristic polynomial for a knot in three 
dimensions. Two knots are inequivalent if they have different Jones polynomials. However, the 
mathematical definition of the Jones polynomial is not manifestly three-dimensional. Witten 
provided a path-integral definition of the Jones polynomial using a three-dimensional Chern-Simons 
quantum field theory (QFT) based on a non-abelian gauge field [10]. Even though Witten’s 
expression does not admit a rigorous mathematical definition, it provides an intuitive geometric 
definition of a topological invariant. The Jones polynomial is also related to other aspects of 
Mathematical Physics, such as integrable lattice statistical mechanics, and two-dimensional 
conformal field theory and associated representations of braid groups. A quantum algorithm for 



computing it was found by Lomonaco and Kauffman [11], and was implemented using NMR [12]. At 
the workshop, Lomonaco discussed a research program based on quantum knots developed by him 
and Kauffman [13,14] which can be useful in robust quantum information processing. 

Knot invariants and a quantum algorithm for the Jones polynomial were also discussed at the 
Workshop by Jordan. He and Shor have shown that Jones polynomials can be approximated in time 
which is polynomial in both the number of strands and number of crossings by quantum 
computation in which all but one qubit start in the maximally mixed state (one clean qubit model) 
[15]. Moreover, the problem of simulating a one-clean-qubit computer is reducible to a certain 
approximation of the Jones polynomial at the fifth root of unity for the trace closure of a braid. 
Thus, the latter is a complete problem for the one-clean-qubit complexity class. This has been 
experimentally verified by Passante, Moussa, Ryan, and Laflamme [16], as well as Marx, Kauffman, 
Lomonaco, Spörl, Pomplun, Schulte-Herbrüggen, Myers, and Glaser [17]. Jordan and collaborators 
also established a relation between the task of distinguishing non-homeomorphic three-manifolds 
and the power of a quantum computer by showing that approximating certain Turaev-Viro 
invariants (scalar topological invariants of compact, orientable three-manifolds) presented by 
Heegaard splittings is a universal problem for quantum computation [18]. Subsequently, Jordan and 
Alagic extended these results by showing that the problem of estimating the Fibonacci version of 
the Turaev-Viro invariant of a mapping torus is a complete problem for the one-clean-qubit 
complexity class [19]. This study in topological quantum information provides insights in pure 
mathematics, such as the solutions to the Yang-Baxter equations [20]. It is also important for the 
simulation of physical systems, such as the quantum Hall effect. 

TQFTs possessing a gauge symmetry provide an intuitive physical arena in which one can study 
topological invariants. While gauge theories are ubiquitous in a physicist’s arsenal, mathematical 
concepts are governed by formal logic as they are constructed from a foundational set of axioms, such 
as set theory or type theory. The latter is in fact well-suited for verification of formal mathematics by a 
computer. It is a challenge to apply computer-based verification of TQFTs and, more generally, quantum 
gauge field theories, because of their complexity. Recent progress has been achieved via Cohesive 
Homotopy Type Theory [21,22]. It was shown that it serves as a formal foundation for central concepts 
in quantum gauge field theories. This points to the interesting possibility of applying automated proof-
checkers on various concepts in TQFTs, which is worth exploring. This was pointed out at the Workshop 
by Balu and Terilla. As Terilla remarked, homotopy theory captures and repackages QFT tools for other 
fields, such as probability theory and the study of fluid flow via the Euler equation [23]. 

An important physical realization of quantum systems is provided by continuous variables (CVs) based 
primarily on photonic systems, as discussed at the Workshop by Siopsis. CVs offer the exciting possibility 
of realizing quantum information processing with existing technology. In addition to Gaussian gates 
which have already been implemented, one needs to construct a non-Gaussian element (gate). Such 
gates have been proposed using the GKP scheme [24], the MFF scheme [25], and by Siopsis and 
collaborators [26]. The last one was used in an algorithm to simulate scattering amplitudes in QFT [27], 
which had certain advantages over its discrete-variable (DV) counterpart introduced by Jordan, Lee, and 
Preskill [28,29], as well as algorithms for quantum machine learning [30] to be compared with their DV 
counterparts [31,32]. A central ingredient is the exponential swap gate [33] whose physical 
implementation was discussed in the Workshop by Hafezi. For practical applications, one needs to 



perform quantum error correction which is still in its infancy for CV systems. Even though non-Gaussian 
errors need only Gaussian elements to correct [34,35], Gaussian error correction requires the use of 
non-Gaussian elements [36]. Moreover, algorithms require the use of eigenstates of quadrature 
operators which can only be approximately physically realized as squeezed states. Information is 
encoded on cat states (superpositions of coherent states) [24,37]. They can be shown to be robust 
against errors through implementation within circuit QED using QSDEs [38]. In general, they need to 
obey Knill-Laflamme conditions [39]. A promising alternative is a quantum error suppression scheme, 
such as dynamical decoupling (bang-bang control) [40,41], which has already been successfully applied 
to nuclear spin systems [42], photonic qubits [43], and DV quantum computing [44]. It would be 
interesting to explore the possibility of applying it for error suppression in CV quantum information 
processing. 

Quantum error correction was further discussed at the Workshop by Laflamme. He concentrated on 
algorithmic cooling in an ensemble setting (solid-state NMR at low polarization) which provides a way to 
remove entropy from the system. Algorithmic cooling can be improved using a heat bath. Laflamme and 
collaborators recently analyzed the control of the relaxation dynamics of a two-qubit NMR spin system 
[45]. They followed a numerical approach, approximately computing the reachable set of states for 
coherently controlled quantum Markovian systems. The approximation consisted of setting both upper 
and lower bounds for system's reachable region of states. By implementing certain experimental tasks 
of quantum state engineering in this open system at a near optimal performance in view of purity (e.g., 
increasing polarization, and preparing pseudopure states), they demonstrated the usefulness of their 
approach and showed interesting and promising applications of environment-assisted quantum 
dynamics. Precisely characterizing and controlling realistic quantum systems under noise is a challenging 
frontier in quantum science and technology. In developing reliable controls for open quantum systems, 
one is often confronted with the problem of the lack of knowledge on the system controllability. 
Developing quantum control methods and solving the resulting QSDEs is an active area of research. 

The use of photonic systems in the simulation of topological properties of physical systems were 
discussed at the Workshop by Hafezi from an experimental point of view. He and collaborators have 
shown how photonic devices can be improved by exploiting topological properties of optical systems. 
They demonstrated how quantum spin Hall Hamiltonians can be created with linear optical elements 
using a network of coupled resonator optical waveguides in two dimensions. They found that key 
features of quantum Hall systems, including the characteristic Hofstadter butterfly and robust edge 
state transport, can be obtained in such systems. As an application, they showed that topological 
protection can be used to improve the performance of optical delay lines and to overcome some 
limitations related to disorder in photonic technologies [46]. Hafezi and collaborators also realized 
synthetic magnetic fields for photons at room temperature using linear silicon photonics, and observed 
topological edge states of light in a two-dimensional system which were robust against intrinsic and 
introduced disorder. Their experiment demonstrated the feasibility of using photonics to realize 
topological order in both non-interacting and many-body regimes [47,48]. The exploration of topological 
properties of light is an active field of research [49-59]. Notable applications are in the fractional 
quantum Hall effect [60] and confined topological edge states in photonic crystals [61]. 

The simulation of physical systems from an experimental point of view using photonic integrated circuits 
was discussed at the Workshop by Englund. He and collaborators have shown that existing fabrication 
processes are sufficient to build quantum photonic processors that are capable of high-fidelity operation 



[62]. They proposed and analyzed the design of a programmable photonic integrated circuit for high-
fidelity quantum computation and simulation. They demonstrated that the reconfigurability of their 
design allowed them to overcome some major impediments to quantum optics on a chip. They also 
simulated an experiment enabled by the programmability of their system for a statistically robust study 
of the evolution of entangled photons in disordered quantum walks. Englund also discussed schemes for 
an efficient architecture of linear optics experiments by using, e.g., time-bin encoding and dispersive 
optics based unitary transformations [63], and all-optical quantum repeaters [64,65]. 

Koch discussed the application of QSDEs to machine learning for controlling quantum circuits and 
producing exotic states of light. Systems of interest are described by QFT and simulated on a lattice 
which must include driving and dissipation (open quantum lattice, such as the open Jaynes-Cummings 
lattice) [66]. An important requirement for a large-scale quantum information processor is the ability to 
construct control pulses to implement an arbitrary quantum circuit in a scalable manner. An analysis of 
errors in control imperfections in a liquid-state NMR system was performed by Laflamme and 
collaborators [67]. As engineered quantum systems become increasingly complex, machine learning 
(closed loop control) can become an efficient tool, especially in open systems with topological 
protection. 

Gosset discussed quantum impurity models which provide a powerful numerical method for calculating 
electronic structure of strongly correlated materials such as transition metal compounds and high-
temperature superconductors. These materials are described by a fermionic lattice QFT and can be 
studied using impurity models within the dynamical mean field theory approximation. Bravyi and Gosset 
used mathematical tools for a fast estimation of the ground state and low energy states of quantum 
impurity models [68]. These results may be useful in hybrid quantum-classical simulations of correlated 
materials. 
 

Blencowe discussed how to engineer strongly nonlinear, superconducting circuit devices that can 
continuously generate macroscopic quantum states of light (non-classical microwaves involving large 
average photon number). He and collaborators investigated the quantum versus classical dynamics of a 
microwave cavity-coupled-Cooper pair transistor system, where an applied dc bias causes the system to 
self-oscillate via the ac Josephson effect [69]. The QSDE governing the system exhibits such phenomena 
as dynamical tunneling and the generation of non-classical states from initial classical states. The system 
may be capable of demonstrating macroscopic quantum dynamical behavior, obviating the need for an 
external ac-drive line, which typically is harder to noise filter than a dc bias line. Blencowe, et al., also 
studied the quantum dynamics of a model circuit consisting of a voltage-biased Josephson junction and 
a superconducting cavity, focusing on the (nonlinear) regime where a single cavity mode is strongly 
excited. The system exhibited quadrature and amplitude squeezing over a broad range of parameters 
[70]. It would be interesting to understand further how classical nonlinearities generate corresponding 
non-classical states [71,72], and generalize the results to many-body systems. Wigner flow may be a 
useful tool for elucidating how non-classical states are generated by nonlinearities and destroyed by 
noise. It would be interesting to exploit Wigner flow and other tools for developing an understanding of 
how to engineer strongly nonlinear, self-oscillating superconducting circuit devices as tunable, 
continuous non-classical microwave sources. The theoretical challenge is to determine the steady cavity 
quantum state, given large Q (long relaxation time), and large photon number (large Hilbert space 
dimension). 



 

Conclusion 

This was a successful Workshop that attracted leading researchers from across the US and Canada who 
engaged in stimulating discussions. The state of the art of mathematical tools, such as quantum 
stochastic differential equations, which are necessary for the development of quantum simulators was 
discussed at the Workshop. The main focus was on topological quantum field theories, topological 
quantum information, and simulation of materials with topological properties. Discussions among 
participants centered around novel mathematical tools and approximation schemes that are needed in 
order to further develop our understanding of physical systems off equilibrium, large ensembles, and 
strong correlations and couplings. The discussions involved a synergy between mathematicians and 
other theorists, as well as experimentalists who can take advantage of mathematical tools, and provide 
feedback regarding the physical realization of mathematical tools. The Workshop was an important 
event toward the advancement of research in the field, and a milestone as ARL becomes a significant 
player in the development of mathematical tools for quantum systems of interest to the Army. 
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